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Abstract
In the present work we report band structure calculations for the high-
temperature superconductor Nd2−x Cex CuO4 in the regime of strong electronic
correlations within an LDA + GTB method, which combines the local density
approximation (LDA) and the generalized tight-binding method (GTB). The
two mechanisms of band structure doping dependence were taken into account.
Namely, the one-electron mechanism provided by the doping dependence
of the crystal structure, and the many-body mechanism provided by the
strong renormalization of the fermionic quasiparticles due to the large on-site
Coulomb repulsion. We have shown that, in the antiferromagnetic and in the
strongly correlated paramagnetic phases of the underdoped cuprates, the main
contribution to the doping evolution of the band structure and Fermi surface
comes from the many-body mechanism.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that the hole doping of La2−x Srx CuO4 and the electron doping of
Nd2−x CexCuO4 shift them into the superconducting state. With the increase of doping
concentration x the band structure undergoes dramatic changes from an antiferromagnetic
(AFM) insulator to a normal paramagnetic metal. It is well established that the strong electronic
correlations play one of the main roles in the formation of the electronic structure of high-Tc
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cuprates. They are important especially for small x values and should be taken into account in
the calculations explicitly.

In the present paper to study the band structure of Nd2−x CexCuO4, we apply the
LDA + GTB computational scheme [8]. This scheme combines ab initio calculations within
the local density approximation (LDA) and the many-body generalized tight-binding (GTB)
approach [9]. Earlier, within the GTB method, a specific many-body mechanism of band
structure evolution for the doped Mott–Hubbard insulator was found. This mechanism is
caused by the changes of occupation factors of many-body electronic terms by the quasiparticle
excitations [9]. For Nd2−x Cex CuO4 such terms are the d10p6 term (zero holes per unit cell) and
the hybridized d9p6 + d10p5 term (one hole per unit cell). Here we highlight also the so-
called ‘one-electron’ mechanism of band structure doping dependence. It originates from the
changes of a crystal structure (lattice parameters, atomic positions) upon doping. As a result,
matrix elements of d–d, p–d, and p–p hybridization (hoppings, and all the rest depending on
the interatomic distance) vary with doping. In the absence of strong electronic correlations, this
mechanism will be responsible for the evolution of band structure with doping in the framework
of the standard band theory. That is why we call it the one-electron mechanism.

Previously, the band structure of Nd2−xCex CuO4 was considered within the LDA
calculations [1–3] and the tight-binding approach [4]. Note, our approach is significantly
different from these two and their simple combination. From the LDA band structure we extract
the doping-dependent tight-binding parameters using a projection procedure, not fitting. Then,
we use a many-body tight-binding computational scheme called the GTB approach. One should
not mix up the one-electron tight-binding approach and the many-body GTB method. Details
of the latter will be given in the next section.

To our knowledge there are no band structure calculations for the high-Tc cuprates that take
both one-electron and many-body mechanisms into account. In the present paper we report
the results of such calculations for Nd2−xCex CuO4 and compare them with the simplified
calculations which do not contain the one-electron mechanism. It was found that in the
antiferromagnetic phase for small doping concentrations, x � 0.1, the one-electron mechanism
results in a slight shift of the bottom of the conduction band and, simultaneously, in a small shift
of the top of the valence band, thus retaining the value of the charge-transfer gap. For higher
doping concentrations, the paramagnetic spin-liquid phase was considered in an approximation
taking the static spin–spin correlation functions into account. In this phase, the one-electron
mechanism provides small changes in the bandwidth. However, the Fermi surface and critical
concentrations at which the Fermi surface topology changes, remain the same as in the case
when the one-electron mechanism is disregarded.

2. Brief description of a hybrid LDA + GTB computational scheme

Ab initio electronic structure calculations within the density functional theory have their
development within the LDA approximation. This approximation does not take strong
electronic correlations into account properly. That is why the true band structure of Mott
insulators cannot be described within the LDA. We employ the LDA to calculate the non-
interacting part of the multiband p–d model Hamiltonian. Then, the strong electronic
correlations enter into the framework of the GTB approach [8].

LDA + GTB method consists of the following steps:

(i) Ab initio LDA band structure calculation, finding of Bloch functions;

(ii) construction of the Wannier functions for the physically relevant states;
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Table 1. Crystal structure parameters (Å) for Nd2−x Cex CuO4 for different Ce concentrations
(see [11, 12]).

Lattice constant x = 0.00 0.05 0.10 0.15 0.20 0.30

a 3.943 62 3.940 56 3.940 71 3.942 24 3.942 95 3.942 88
c 12.1584 12.1130 12.0945 12.0603 12.030 12.0288
z (Nd) 0.35112 0.3519 0.3523 0.3527 0.3531 0.3531

(iii) construction of the multiband p–d model Hamiltonian with the parameters obtained from
the previous two steps;

(iv) splitting of the multiband p–d model Hamiltonian into a sum of inter- and intra-cell
components and exact diagonalization of the intra-cell part in order to construct the many-
body molecular orbitals for the unit cell;

(v) construction of the intra-cell Hubbard X -operators on the basis of these molecular orbitals
and rewriting the full Hamiltonian for the crystal in the X -representation;

(vi) calculation of a quasiparticle band structure for Hubbard fermions in the framework of the
perturbation theory with small inter-cell hopping and interactions.

Note, the first version of the GTB method [9, 10] contained a large number of unknown
model parameters, which were extracted by comparison with experimental data. In the
generalized LDA + GTB method, all parameters of the theory are calculated explicitly. For
a given doping concentration x we calculate the ab initio band structure. The one-electron
mechanism of band structure doping dependence is determined by the dependence of the
matrix elements of the interatomic hopping and one-electron energies on doping, which is
due to the change of the lattice parameters with x . The many-body mechanism arises from the
doping dependence of the occupation factors. Thus, the one-electron mechanism takes place for
the ordinary tight-binding method while the many-body mechanism appears within the GTB
method as the effect of the strong electronic correlations.

3. Electronic structure and model parameters of Nd2−xCexCuO4: LDA results

Nd2CuO4 crystallizes in tetragonal structure with the symmetry space group I 4/mmm [11],
also called the T ′-structure. Lattice parameters are a = b = 3.943 62 Å, and c =
12.1584 Å [11]. Cu ions in positions 2a, (0, 0, 0), are surrounded by four ions of oxygen
O1, which occupy positions 4c, (0, 0.5, 0). Ions of Nd in positions 4e, (0, 0, 0.35112), have
eight nearest neighbors of oxygen O2 in positions 4d, (0, 0.5, 0.25). In comparison with the
high-temperature tetragonal structure of La2CuO4, in the T ′-structure of Nd2CuO4 the apical
oxygen ions around Cu ions are absent. With Ce doping the symmetry group of Nd2−x CexCuO4

remains the same whereas the lattice parameters and z-coordinate of Nd positions are changing
(see table 1) [11, 12].

Electronic structure of Nd2−x Cex CuO4 at 0 � x � 0.3 was calculated using the local
density approximation. To this end, the linearized muffin-tin orbitals (LMTO) method in
the tight-binding approach within the atomic spheres approximation (TB–LMTO–ASA) was
applied [13, 14]. The 4f states of Nd were considered as semi-core states, because they are
well localized and are situated far below the Cu-d states [15]. The LDA band structure of
Nd2−x CexCuO4 along the high symmetry directions of the Brillouin zone is shown in figure 1
with gray dashed curves. Bands formed by the hybridized 3d copper and 2p oxygen states
have a width of approximately 9 eV. As a result of hybridization between the dx2−y2 copper
orbital and appropriate px,y orbitals of plain oxygen (O1), the bonding bands are located at
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Figure 1. Comparison of the electronic dispersion obtained within the LDA calculations (gray
dashed curves) and the electronic dispersion of the effective non-interacting three-band Hamiltonian
for the NMTO orbitals basis set (black solid curves) for different Ce concentrations x .

energies −5 · · ·−6 eV, while the antibonding bands cross the Fermi level. These hybrid orbitals
determine the non-interacting Hamiltonian of the so-called three-band p–d model [16, 17].

To calculate hopping integrals for the three-band p–d model, the NMTO (muffin-tin
orbitals of N th order) [18] method was used. For the three physically relevant hybrid bands
(Cu-dx2−y2 and O1-px,y ) the NMTO orbitals were constructed. Corresponding band dispersions
are shown in figure 1 by solid black curves. Observe, that NMTO orbitals almost perfectly
reproduce the LDA calculated bonding and antibonding bands formed by hybrid dx2−y2 copper
and px,y oxygen orbitals. Thus, within this NMTO basis we have obtained an effective few-
orbital Hamiltonian, the three-band p–d model, which we were looking for.

Note, we do not take into account the Cu-4s orbitals explicitly. Their importance for
the bilayer cuprates was shown in [5–7]. For bilayer structures, the 4s states connect two
neighboring CuO2-layers. It is not the case for Nd2−xCex CuO4, the system where there is
only one CuO2-layer per unit cell. Moreover, due to the absence of apical oxygens this layer
becomes even more two-dimensional. There is also a contribution from the Cu-4s states to
the in-plane hopping integrals [4]. However, in paper [5] it was shown that one can do the so-
called Loewdin transformation and end up with the three-band p–d model with the renormalized
parameters. Since our tight-binding parameters are not fitted but calculated within the NMTO
method from the full-band LDA results, such a renormalization is automatically performed.
Thus, we partially take into account the Cu-4s states implicitly.

Having applied the Fourier transform to this effective Hamiltonian in momentum space we
obtain the real space hopping integrals depending on the distances between atoms (see table 2).
From figure 1 and table 2 one can conclude that hopping integrals change with doping slightly.
It allows us to assume that the one-electron contribution to the evolution of Nd2−x CexCuO4

electronic structure with increase of Ce concentration is not substantial.
For the three-band p–d model we also need the values of Coulomb repulsion U and Hund’s

exchange parameter JH for Cu ions. In the paper [19] they were calculated for copper in the
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Table 2. Hopping integrals and one-electron energies (eV) as a function of Ce concentration for
Nd2−x Cex CuO4 obtained by the NMTO method. Here x2, px , py denote the Cu-dx2−y2 and O1-px,y

orbitals respectively.

x = 0.00 0.05 0.10 0.15 0.20 0.30

Energy

E(x2) −2.2855 −2.2847 −2.1760 −2.4215 −2.3507 −2.3234
E(px ) −3.2935 −3.3064 −3.2829 −3.2607 −3.2800 −3.2957

Hopping Direction

t (x2, px ) (0.5, 0) 1.1216 1.1454 1.1665 1.1614 1.1726 1.1719
t ′(x2, px ) (0.5, 1) −0.0504 −0.0359 −0.0211 −0.0202 −0.0166 −0.0201
t ′′(x2, px ) (1.5, 0) 0.0834 0.0921 0.1173 0.1130 0.1203 0.1126
t ′′′(x2, px ) (1.5, 1) −0.0149 −0.0083 0.0015 0.0090 0.0153 0.0099
t (px , py) (0.5, 0.5) 0.8320 0.8389 0.8381 0.8365 0.8386 0.8304
t ′(px , py) (1.5, 0.5) 0.0266 0.0331 0.0452 0.0450 0.0469 0.0388

La2CuO4 compound by a super-cell method [20] and equal to: U = 10 eV, JH = 1 eV.
We presume these values to be doping independent and use them in the present paper for the
Nd2−x CexCuO4 compound.

4. LDA + GTB results in the AFM phase

For the wide range of doping concentrations Nd2−x CexCuO4 remains in the AFM phase.
Therefore, we will consider the evolution of the band structure with doping in the AFM phase
first. Within the GTB method for this phase we use the Hubbard-I approximation [21], though
the diagram technique for the X -operators [22–24] allows one to go beyond this approximation.

To write down the model Hamiltonian we use the Hubbard X -operators [25]: Xα
f ↔

Xn,n′
f ≡ |n〉〈n′|. Here index α ↔ (n, n′) enumerates quasiparticles with energy ωα =

εn(N + 1) − εn′(N), where εn is the nth energy level of the N-electron system. The
commutation relations between X -operators are quite complicated, i.e. two operators commute
on another operator, not a c-number. Nevertheless, depending on the difference of the number
of fermions in states n and n′ it is possible to define quasi-Fermi and quasi-Bose type operators
in terms of obeyed statistics. There is a simple correspondence between X -operators and the
single-electron annihilation operators: a f λσ = ∑

α γλσ (α)Xα
f , where the coefficients γλσ (α)

determine the partial weight of the quasiparticle α with spin σ and orbital index λ. These
coefficients are calculated straightforwardly within the GTB scheme.

In the Hubbard-I approximation, the dispersion equation for the band structure of the
Hubbard fermions in the AFM phase with the sublattices A and B is the following [10]:

∥
∥
∥
∥
∥

(
E − �B

α

)
δαβ/FB

α − 2
∑

λλ′
γ ∗

λσ (α)T AB
λλ′ (�k)γλ′σ (β)

∥
∥
∥
∥
∥

= 0, (1)

where �B
α is the intra-cell local energy of the Hubbard fermion and T AB

λλ′ (�k) is the Fourier
transform of the matrix element of the intra-cell hopping between the one-electron orbitals λ

and λ′. The occupation factor, FB
α , is equal to the sum of the occupancies of initial and final

many-body states, the transition between which is described by the operator Xα
f .

Since the structure of dispersion equation (1) is similar to the equation in the one-electron
tight-binding approach, our method was called the generalized tight-binding (GTB) method.
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Figure 2. The quasiparticle energy momentum dependence calculated within the LDA + GTB
method for x = 0 (a), x = 0.05 (b), x = 0.1 (c), and x = 0.15 (d). The dotted curve corresponds to
the calculation without the one-electron mechanism of concentration dependence. The solid curve
represents the results of calculations in which both many-body and one-electron mechanisms were
considered.

At the same time, there are important distinctions of equation (1) from its one-electron analog.
Namely, the local energies �B

α are calculated with explicit consideration of strong electronic
correlations inside the cell. Thus, the corresponding occupation factor can have non-integer
values and it depends on temperature and doping concentration. As a result, the doping
dependence of the electronic structure is not described by the rigid band model, so the effect of
doping is not only due to the shift of a chemical potential for a given band structure. There are
bands with the spectral weight proportional to x for small doping concentrations. These bands
appear inside the dielectric gap near the bottom of the conduction band for n-type cuprates
and near the top of the valence band in hole-doped cuprates. These states are called ‘in-gap
states’ [9, 10, 26]. Note, they are not an impurity state of a doped semiconductor formed in
the presence of a defect since no defects are present in our model. An example of the in-gap
states near the bottom of the conduction band in Nd2−x CexCuO4 will be discussed later in this
section.

The results of the LDA + GTB calculations of the dispersion using equation (1) in the Néel
state are shown in figure 2. In each figure for a given doping concentration the results of two
calculations are shown: (i) with the model parameters calculated for x = 0 (i.e. in the absence
of the one-electron mechanism but with the many-body mechanism taken into account), and (ii)

6
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for the model parameters which depend on the concentration (see table 2), also taking the many-
body mechanism into account. In the former case, the doping dependence is determined only
by the doping dependence of the occupation factors, FB

α , while in the latter case the dependence
of matrix elements T AB

λλ′ (�k) on doping was also taken into account.
The results of the electronic structure calculations for an undoped compound, figure 2(a),

reproduce the main effects of the strong electronic correlations in this material. On the bottom
of the conduction band and on the top of the valence band there are in-gap states with spectral
weight proportional to the doping level [9, 10, 26]. Upon increase of doping concentration, the
in-gap state at the bottom of the conduction band becomes dispersive with non-zero spectral
weight (see figures 2(b)–(d)).

For each concentration one can notice that ‘switching-off’ the one-electron mechanism
leads to a shift of the top of the valence band and the bottom of the conduction band. This shift
is almost uniform and its value is very small. Also, this does not prevent the appearance of the
in-gap states. Thus, one can conclude that such fine tuning of the Hamiltonian parameters just
gives a shift of the electronic structure as a whole in the vicinity of the dielectric gap. This is
most probably not very important for the physics of the high-Tc materials.

5. Paramagnetic phase

To treat a spin-liquid phase, the multiband p–d model Hamiltonian was mapped onto an
effective low-energy model [8]. Parameters of this effective model are obtained directly from
the ab initio parameters of the multiband model. The low-energy model for n-type cuprates
is the t–t ′–t ′′–J ∗ model (t–t ′–t ′′–J model with the three-site correlated hoppings) with the
following Hamiltonian in the hole representation:

H =
∑

f,σ

(ε0 − μ) Xσ,σ
f +

∑

f 	=g,σ

t f g Xσ,0
f X0,σ

g +
∑

f 	=g

J f g

(�S f �Sg − 1
4 n f ng

)
+ H3. (2)

Here μ is the chemical potential, �S f is the spin operator, S+
f = Xσ,σ̄

f , S−
f = X σ̄ ,σ

f ,

Sz
f = 1

2 (Xσ,σ
f −X σ̄ ,σ̄

f ), n f = ∑
σ Xσ,σ

f is the number of particles operator, J f g = 2t̃2
f g/Ect is the

exchange parameter, Ect = 2 eV is the charge-transfer gap. In the notations of [8], the hopping
matrix elements t f g correspond to −t00

f g, and t̃ f g = −t0S
f g . The Hamiltonian H3 contains the

three-site interaction terms:

H3 =
∑

f 	=g 	=m,σ

t̃ f m t̃mg

Ect

(
Xσ0

f X σ̄ σ
m X0σ̄

g − Xσ0
f X σ̄ σ̄

m X0σ
g

)
. (3)

In the considered case there is only one Fermi-type quasiparticle, α = (0, σ ), with
γλσ (α) = 1, and the Hamiltonian in the general form in the momentum representation is given
by:

H =
∑

�k,σ

(ε0 − μ) Xσ,σ

�k +
∑

�k

∑

α,β

tαβ

�k Xα
�k

† Xβ

�k +
∑

�p,�q

∑

α,β,σ,σ ′
V αβ,σσ ′

�p�q Xα
�p

† Xσ,σ ′
�p−�q Xβ

�q . (4)

The Fourier transform of the two-time retarded Green function in the energy
representation, Gλ(�k, E) = 〈〈a�kλσ |a†

�kλσ
〉〉E , can be rewritten in terms of the matrix Green

function, [D̂(�k, E)]αβ = 〈〈Xα
�k |Xβ

�k
†〉〉E :

Gλ(�k, E) =
∑

α,β

γλσ (α)γ ∗
λσ (β)Dαβ(�k, E). (5)

7
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The generalized Dyson equation for the Hubbard X -operators [24] in the paramagnetic
phase (〈Xσ,σ

0 〉 = 〈X σ̄ ,σ̄
0 〉) reads:

D̂(�k, E) =
[
Ĝ−1

0 (E) − P̂(�k, E)t̂�k − P̂(�k, E)V̂ σ,σ

�k�k 〈Xσ,σ
0 〉 + �̂(�k, E)

]−1
P̂(�k, E). (6)

Here, Ĝ−1
0 (E) is the exact local Green function, Gαβ

0 (E) = δαβ/[E − (εn − εn′)], �̂(�k, E)

and P̂(�k, E) are the self-energy and the strength operators, respectively. The presence of
the strength operator is due to the redistribution of the spectral weight between the Hubbard
subbands, that is an intrinsic feature of the strongly correlated electron systems. It also should
be stressed that �̂(�k, E) in equation (6) is the self-energy in the X -operator representation and
therefore it is different from the self-energy entering the Dyson equation for the weak coupling
perturbation theory for Gλ(�k, E).

To calculate the strength operator P̂(�k, E) we use the zero-loop approximation given
by the replacement: Pαβ(�k, E) → Pαβ = δαβ Fα , where Fα(n,n′) = 〈Xn,n

f 〉 + 〈Xn′,n′
f 〉

is the occupation factor. Taking into account that in the considered paramagnetic phase
〈Xσ,σ

f 〉 = 1−x
2 , 〈X0,0

f 〉 = x , after all substitutions and treating all �k-independent terms as the
chemical potential renormalization, the generalized Dyson equation for the Hamiltonian (2)
becomes:

D(�k, E) = (1 + x)/2

E − (ε0 − μ) − 1+x
2 t�k − 1+x

2

t̃2
�k

Ect

1−x
2 + �(�k, E)

. (7)

To go beyond the Hubbard-I approximation we have to calculate �(�k, E). This was done
in [27] using an equations of motion method for the X -operators [28]. The calculations resulted
in the following expression:

�(�k) = 2

1 + x

1

N

∑

�q

{[

t�q − 1 − x

2
J�k−�q − x

t̃2
�q

Ect
− 1 + x

2

2t̃�k t̃�q
Ect

]

K �q

−
[

t�k−�q − 1 − x

2

(

J�q −
t̃2
�k−�q
Ect

)

− 1 + x

2

2t̃k t̃�k−�q
Ect

]
3

2
C�q

}

. (8)

Here N is the number of vectors in momentum space. Also, the static spin–spin correlation
function

C�q =
∑

f,g

e−i( f −g)�q〈Xσ σ̄
f X σ̄ σ

g 〉 = 2
∑

�r
e−i�r �q〈Sz

�r Sz
0〉, (9)

and the kinematic correlation function

K �q =
∑

f,g

e−i( f −g)�q〈Xσ0
f X0σ

g 〉, (10)

were introduced.
Kinematic correlation functions (10) are calculated straightforwardly using the Green

function (7). The spin–spin correlation functions for the t–J model with the three-site
correlated hoppings H3 were calculated in [29] and the following expression for the Fourier
transform of the spin–spin Green function was derived:

〈〈Xσ σ̄
�q |X σ̄ σ

�q 〉〉ω = A�q(ω)

ω2 − ω2
�q
, (11)

where A�q(ω) and the magnetic excitations spectrum ω�q are given in [29] by equations (25)
and (26), respectively.

8



J. Phys.: Condens. Matter 19 (2007) 486203 M M Korshunov et al

Figure 3. Doping-dependent evolution of the kinematic (upper panel) and the spin–spin (lower
panel) correlation functions within the t–t ′–t ′′–J ∗ model. Index n enumerates the real space vectors
connecting the neighboring sites: n = 1 for the nearest-neighbors, n = 2 for the next nearest
neighbors, and so on.

The following results were obtained by self-consistent calculation of the chemical potential
μ, the spin–spin correlation functions (9) using the Green function (11), and the kinematic
correlation functions (10) using the Green function (7) with the self-energy (8).

Parameters of the effective t–t ′–t ′′–J ∗ model were obtained directly from the ab initio
parameters of the multiband model, table 2. Their dependence on Ce concentration is presented
in table 3. Note, here we took Cu-4s orbitals into account implicitly through the LDA + GTB
method, as was described in section 3. However, within the Hubbard operators technique it is
possible to take these orbitals into account explicitly using more cumbersome methods like the
one introduced in [30].

Our results for the doping dependence of the kinematic and spin–spin correlation functions
are shown in figure 3. Here, variable x ′ denotes the concentrations for which the one-
electron parameters were calculated. Thus, x ′ = 0 corresponds to the absence of the one-
electron mechanism of doping dependence, while x ′ = x corresponds to the presence of
this mechanism. However, the many-body mechanism is present in both cases. Note, the
behavior of all correlation functions is almost identical for the cases of the presence and absence
of the one-electron mechanism of doping dependence. Also note, the kinematic correlation
functions, Kn , possess a very nontrivial doping dependence. For low concentrations, x < 0.2,
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Table 3. Doping-dependence of the effective t–t ′–t ′′–J ∗ model parameters (all values are in eV).
Note, in the notations of [8] the hopping matrix elements t f g correspond to −t00

f g , and t̃ f g = −t0S
f g .

Also, J f g = 2t̃2
f g/Ect.

Parameter x = 0.00 0.05 0.10 0.15 0.20 0.30

−t ≡ −t01 0.552 0.560 0.561 0.572 0.572 0.567
−t ′ ≡ −t11 −0.054 −0.053 −0.050 −0.056 −0.054 −0.052
−t ′′ ≡ −t02 0.086 0.087 0.087 0.070 0.089 0.088

J ≡ J01 0.463 0.477 0.484 0.488 0.492 0.486
J ′ ≡ J11 0.007 0.007 0.007 0.007 0.007 0.007
J ′′ ≡ J02 0.012 0.013 0.013 0.013 0.013 0.013

−t̃01 0.680 0.691 0.695 0.699 0.701 0.697
−t̃11 −0.085 −0.085 −0.081 −0.086 −0.084 −0.082
−t̃02 0.111 0.112 0.112 0.113 0.113 0.112

due to the strong magnetic correlations the hoppings to the nearest neighbors are suppressed
leading to the small value of K1, while K2 and K3 are not suppressed. Upon increase of the
doping concentration above x ≈ 0.2, magnetic correlations decrease considerably and the
nearest-neighbor kinematic correlation function K1 increases, reviving the almost Fermi liquid
behavior: K1 becomes largest of all Kn values, while the magnetic correlation functions, Cn ,
are strongly suppressed.

So, we can clearly define one point of the crossover, namely, xm ≈ 0.2. The system
behavior is quite different on the different sides of these point, although there is no phase
transition when symmetry breaking occurs. Apparently, this crossover is closely connected
to the change of the Fermi surface topology with doping. Fermi surface evolution together
with the quasiparticle dispersion is shown in figure 4. For small x , the electron pockets
around (±π, 0) and (0,±π) points are present at the Fermi surface. Upon increase of the
doping concentration these pockets become larger and merge together at x = 0.2. For higher
concentrations, the Fermi surface appears to be a large hole-like one, shrinking toward the
(π, π) point. Thus, the topology of the Fermi surface changes at the same doping xm , where
the point of crossover is situated. For the first time the ‘electronic transition’ accompanying
the change of the Fermi surface topology, or the so-called Lifshitz transition, was described
in [31]. Now such transitions are referred to as quantum phase transitions with a co-dimension
= 1 (see e.g. paper [32]).

Note, when the Fermi surface topology changes at a quantum critical concentration
xm = 0.2 the density of states at the Fermi level also exhibits significant transformation.
This results in the different behavior of the kinematic and magnetic correlation functions on
different sides of this crossover point, and, of course, the changes in the density of states at the
Fermi level will also result in significant changes of such observable physical quantities as the
resistivity and the specific heat.

Above the critical concentration, the Van Hove singularity in DOS is due to the flat
dispersion around the (π, 0) point. However, for x < xm this singularity is due to the states
near the (π/2, π/2) point. This is the result of many-body interactions that cannot be obtained
within the one-electron band theory.

Concerning the role of the short range magnetic order and three-site hopping terms in the
n-type cuprates, we would like to stress that due to the scattering on the magnetic excitations
with the AFM wavevector �Q = (π, π) the states near the (π, π) point are pushed above the
Fermi level, and the local symmetry around the (π/2, π/2) points is restored for low doping
concentrations (see figure 4). In other words, the short range magnetic order ‘tries’ to restore
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Figure 4. Doping-dependent quasiparticle dispersion (on the left) and Fermi surface (on the right)
in the spin-liquid phase of n-type cuprates. The position of the chemical potential is denoted by the
horizontal (green) line. The solid (blue) curves correspond to the calculations without taking the
one-electron mechanism of concentration dependence into account (x ′ = 0 case). The dashed (red)
curves represent results of the calculations in which both many-body and one-electron mechanisms
were considered (x ′ = x case). Note, the Fermi surfaces for both x ′ = 0 and x = x cases are
almost indistinguishable.
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the AFM symmetry around the (π/2, π/2) point. In our calculations, the short range magnetic
fluctuations are taken into account via the spin–spin correlation functions (9).

Now we proceed to the comparison of the one-electron and many-body mechanisms of
the doping dependence. In figure 4 the quasiparticle dispersion without the one-electron
mechanism is shown by the solid (blue) curves. Apparently, its difference from the case when
both one-electron and many-body mechanisms are present is negligibly small. In the latter
case the bandwidth is slightly renormalized while band dispersion retains the same character.
Moreover, the Fermi surfaces for both cases are very similar and the quantum phase transition
will be at the same concentration, xm = 0.2.

6. Conclusion

In the present work we report the combined investigation of the one-electron and the many-
body mechanisms of the electronic structure doping dependence for the high-Tc compound
Nd2−x CexCuO4. The electronic structure calculations were performed within the hybrid
LDA + GTB scheme. For both the antiferromagnetic and paramagnetic spin-liquid phases
we demonstrate that the main effect on the electronic structure is provided by the many-body
mechanism, whereas the one-electron contribution leads to small quantitative modifications
which do not change the picture qualitatively. The role of the many-body mechanism is very
important because of the strong electronic correlations present in the underdoped cuprates.
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State Commun. 73 791

[13] Andersen O K and Jepsen O 1984 Phys. Rev. Lett. 53 2571
[14] Andersen O K, Pawlowska Z and Jepsen O 1986 Phys. Rev. B 34 5253
[15] Singh D J 1991 Phys. Rev. B 44 7451
[16] Emery V J 1987 Phys. Rev. Lett. 58 2794
[17] Varma C M, Smitt-Rink D and Abrahams E 1987 Solid State Commun. 62 681
[18] Andersen O K and Saha-Dasgupta T 2000 Phys. Rev. B 62 16219(R)
[19] Anisimov V I, Korotin M A, Nekrasov I A, Pchelkina Z V and Sorella S 2002 Phys. Rev. B 66 100502
[20] Gunnarsson O, Andersen O K, Jepsen O and Zaanen J 1989 Phys. Rev. B 39 1708
[21] Hubbard J C 1963 Proc. R. Soc. A 276 238
[22] Zaitsev R O 1975 Sov. Phys.—JETP 41 100
[23] Izumov Yu and Letfullov B M 1991 J. Phys.: Condens. Matter 3 5373
[24] Ovchinnikov S G and Val’kov V V 2004 Hubbard Operators in the Theory of Strongly Correlated Electrons

(London: Imperial College Press)
[25] Hubbard J C 1964 Proc. R. Soc. A 277 237
[26] Ovchinnikov S G, Borisov A A, Gavrichkov V A and Korshunov M M 2004 J. Phys.: Condens. Matter 16 L93
[27] Korshunov M M and Ovchinnikov S G 2006 Eur. Phys. J. B 57 271
[28] Plakida N M, Yushankhai V Yu and Stasyuk I V 1989 Physica C 162–164 787
[29] Val’kov V V and Dzebisashvili D M 2005 Zh. Eksp. Teor. Fiz. 127 686

Val’kov V V and Dzebisashvili D M 2005 JETP 100 608 (Engl. Transl.)
[30] Digor D F, Entel P, Moskalenko V A and Plakida N M 2006 Theor. Math. Phys. 149 1382
[31] Lifshitz I M 1960 Sov. Phys.—JETP 11 1130
[32] Volovik G E 2006 Acta Phys. Slovaca 56 49

Volovik G E 2006 Preprint cond-mat/0601372

13

http://dx.doi.org/10.1016/0038-1098(90)90172-8
http://dx.doi.org/10.1103/PhysRevLett.53.2571
http://dx.doi.org/10.1103/PhysRevB.34.5253
http://dx.doi.org/10.1103/PhysRevB.44.7451
http://dx.doi.org/10.1103/PhysRevLett.58.2794
http://dx.doi.org/10.1016/0038-1098(87)90407-8
http://dx.doi.org/10.1103/PhysRevB.62.R16219
http://dx.doi.org/10.1103/PhysRevB.66.100502
http://dx.doi.org/10.1103/PhysRevB.39.1708
http://dx.doi.org/10.1098/rspa.1963.0204
http://dx.doi.org/10.1088/0953-8984/3/28/012
http://dx.doi.org/10.1098/rspa.1964.0019
http://dx.doi.org/10.1088/0953-8984/16/8/L04
http://dx.doi.org/10.1140/epjb/e2007-00179-2
http://dx.doi.org/10.1016/0921-4534(89)91260-4
http://www.springerlink.com/content/wkv58713428308vl/
http://dx.doi.org/10.1134/1.1901772
http://dx.doi.org/10.1007/s11232-006-0126-1
http://arxiv.org/abs/cond-mat/0601372

	1. Introduction
	2. Brief description of a hybrid LDA+GTB computational scheme
	3. Electronic structure and model parameters of Nd _{2-x}Ce _xCuO _4 : LDA results
	4. LDA+GTB results in the AFM phase
	5. Paramagnetic phase
	6. Conclusion
	Acknowledgments
	References

